首页 > 新闻 > 正文

一文看懂:"边缘计算"究竟是什么?为何潜力无限?

2018-08-15 13:57:34来源:网易科技报道  

8月15日消息,知名创投调研机构CB Insights撰文详述了边缘计算的发展和应用前景。文章称,云计算已经不足以即时处理和分析由物联网设备、

8月15日消息,知名创投调研机构CB Insights撰文详述了边缘计算的发展和应用前景。文章称,云计算已经不足以即时处理和分析由物联网设备、联网汽车和其他数字平台生成或即将生成的数据,这个时候边缘计算能够派上用场。该技术拥有着应用于诸多行业领域和发挥巨大作用的潜力。

以下是文章主要内容:

有时更快的数据处理是一种奢侈——有时它生死攸关。

例如,自动驾驶汽车本质上是一台装有轮子的高性能计算机,它通过大量的传感器来收集数据。为了使得这些车辆能够安全可靠地运行,它们需要立即对周围的环境做出反应。处理速度的任何延迟都有可能是致命的。虽然联网设备的数据处理现在主要是在云端进行的,但在中央服务器之间来回传送数据可能需要几秒钟的时间。这一时间跨度太长了。

一文看懂:边缘计算究竟是什么?为何潜力无限?

边缘计算则让自动驾驶汽车更快速地处理数据成为可能。这种技术使得联网设备能够处理在“边缘”形成的数据,这里的“边缘”是指位于设备内部或者与设备本身要近得多的地方。

据估计,到2020年,每人每天平均将产生1.5GB的数据量。随着越来越多的设备连接到互联网并生成数据,云计算可能无法完全处理这些数据——尤其是在某些需要非常快速地处理数据的使用场景当中。

边缘计算是云计算以外的另一种可选解决方案,未来它的应用范围很有可能将远不止是无人驾驶汽车。

包括亚马逊、微软和谷歌在内的一些科技巨头都在探索“边缘计算”技术,这可能会引发下一场大规模的计算竞赛。虽然亚马逊云服务Amazon Web Services(AWS)在公共云领域仍然占据主导地位,但谁将成为这个新兴的边缘计算领域的领导者仍有待观察。

在本文中,我们将深入探讨什么是边缘计算,与该技术相关的优势,以及它在各行各业中的应用。

一个充满变化的计算领域

在了解边缘计算之前,我们必须先来看看它的前身——云计算——是如何为遍布全球的物联网(IoT)设备铺平道路的。

云计算

从可穿戴设备到联网厨房电器,联网设备可以说无处不在。据估计,到2019年,全球物联网市场规模将超过1.7万亿美元,较2013年的4860亿美元增长逾两倍。

因此,云计算——许多智能设备连接到互联网来运作的过程——已经成为一种越来越主流的趋势。

云计算使得公司能够在自己的物理硬件之外,通过远程服务器网络(俗称“云”)存储和处理数据(以及其他的计算任务)。

一文看懂:边缘计算究竟是什么?为何潜力无限?

例如,你可以选择使用苹果的iCloud云服务来备份你的智能手机,然后你可以通过另一个联网设备(比如你的台式电脑)检索智能手机里的数据,方法是登录你的账户连接到云。你的信息不再受到智能手机或台式机的内部硬盘容量的限制。

这只是众多云计算用例之一。另一个例子是通过Web端或移动浏览器来访问各种完整的应用程序。由于云计算越来越受欢迎,它吸引了亚马逊谷歌、微软和IBM等大型科技公司入局。据私有云管理公司RightScale于2018年进行的一项调查显示,在主要的公共云提供商当中,亚马逊AWS和微软Azure分列第一和第二。

一文看懂:边缘计算究竟是什么?为何潜力无限?

图示:越来越多的企业在公共云上运行应用程序

但是集中式云计算并不适合所有的应用程序和用例。边缘计算则能够在传统云基础设施可能难以解决的领域提供解决方案。

向边缘计算的转变

在我们到处充斥着数据的未来,将有数十亿部设备连接到互联网,因此更快更可靠的数据处理将变得至关重要。

近年来,云计算的整合和集中化性质被证明具有成本效益和灵活性,但物联网和移动计算的兴起给网络带宽带来了不小的压力。

最终,并不是所有的智能设备都需要利用云计算来运行。在某些情况下,这种数据的往返传输能够——也应该——避免。

由此,边缘计算应运而生。

根据CB Insights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。虽然这是一个新兴领域,但在云计算覆盖的一些领域,边缘计算的运行效率可能要更高。

边缘计算使得数据能够在最近端(如电动机、泵、发电机或其他的传感器)进行处理,减少在云端之间来回传输数据的需要。

一文看懂:边缘计算究竟是什么?为何潜力无限?

市场研究公司IDC称,边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中央数据中心或云存储库,其覆盖范围不到100平方英尺”。

例如,一列火车可能包含可以立即提供其发动机状态信息的传感器。在边缘计算中,传感器数据不需要传输到火车上或者云端的数据中心,来查看是否有什么东西影响了发动机的运转。

本地化数据处理和存储对计算网络的压力更小。当发送到云的数据变少时,发生延迟的可能性——云端与物联网设备之间的交互导致的数据处理延迟——就会降低。

这也让基于边缘计算技术的硬件承担了更多的任务,它们包含用于收集数据的传感器和用于处理联网设备中的数据的CPU或GPU。

随着边缘计算的兴起,理解边缘设备所涉及的另一项技术也很重要,它就是雾计算。

边缘计算具体是指在网络的“边缘”处或附近进行的计算过程,而雾计算则是指边缘设备和云端之间的网络连接。

换句话说,雾计算使得云更接近于网络的边缘;因此,根据OpenFog的说法,“雾计算总是使用边缘计算,而不是边缘计算总是使用雾计算。”

说回我们的火车场景:传感器能够收集数据,但不能立即就数据采取行动。例如,如果一名火车工程师想要了解火车车轮和刹车是如何运行的,他可以使用历史累计的传感器数据来预测零部件是否需要维修。

在这种情况中,数据处理使用边缘计算,但它并不总是即时进行的(与确定引擎状态不同)。而使用雾计算,短期分析可以在给定的时间点实现,而不需要完全返回到中央云。

责任编辑:hnmd003